Big Data Systems Performance:
The Little Shop of Horrors

Jens Dittrich

Saarland Informatics Campus
d:Al:mond.al
twitter.com/jensdittrich

http://twitter.com/jensdittrich

CV

Developer at SAP BW/Trex, Associate Professor,

Saarland University
‘Ph.D. In Databases

2000 2005 2010 2015 2017

Column Stores
_ Streams Join processing

Hadoop&Cloud
Database Architectures main-memory databases

Postdoc at ETH Zurich Full Professor,
Saarland University

Join processing

SYRICINE
Crazy Stuff

Data Lake!

The Data Lake will cure irtliil g o~
all of your problems! ’

_— e
— ’r

e .
!
:
U
'’
l.'
%

f

will cure Yl T e
all of your problems!

_— e
— ’r

e .
!
:
U
'’
l.'
%

f

The TV shop

“TV expert”

S

This model even has
HyperRay++Rendering!

http://istock.com

500Hz rather than
250HzZ

man

B AL

Y -

http://istock.com

=

/

http://istock.com

The “Big Data" shop

-
©
c
O
S
S\

©

http://istock.com

http://istock.com

The leading NoSQL
Data Lake solution In the
cloud!

s “Big Data expert”

y \\ - \\x, . Eise Sl i i
W “ \ —

ot &

http://istock.com

— Blockchain-
enabled

Al

< "Big Data expert”

\\\ o r <
/ N\ » » . v ..'-’ o

.

http://istock.com

: 4 .\ —
¢

s “Big Data expert”

http://istock.com

buillt on the
Lamda-
architecture

NN
.

E

i

g Bg Data expert”

http://istock.com

Al

< "Big Data expert”

. \\\ “\ ' ; "\‘ Sl v

.

http://istock.com

Al

< "Big Data expert”

. \\\ “\ ' ; "\‘ Sl v

.

http://istock.com

N W m -

A 7 ¥
: . \,
.

s “Big Data expert”

http://istock.com

Problem 1:
ambiguous communication

21

MapReduce

NoSQL

22

MapReduce

NoSQL

/ large data

MapReduce

/

He said:
“Big Data”“

24

e translated to:

A

&
b

clear communication:

26

relational
algebra

,]
, elational
algebra,

l.e. T, 0, X, ...

21

relational
algebra

relational
algebra, <«—

l.e. T, 0, X, ...

He said:
“relational algebra”

28

Q translated to:

A

-
b

The symbol to meaning landscape

relational

algebra large data Big Data

predicate

pushdown Data Science ML Al

relational Deep Learning
model NoSQL

data layout MapReduce cloud

cost-based
optimization

—

L few many o

Hadoop

meanings

advice: only use non-ambigous
terms In communication

31

Problem 2:
confusion of dimensions

32

Big Data Al NoSQL Cloud

N
dimension 1:
fancy sounding buzzwords
(labels & terms)

dimension 2:
technical principles
and patterns
(concepts, best
practices)

predicate pushdown

relational model

relational algebra

data layouts,
e.d. column vs row

cost-based optimization

compress to save I/0

Bl

Simension = predicate pushdown
technical principles
and patterns

(concepts, best
practices)

relational model

relational algebra

data layouts,
e.d. column vs row

cost-based optimization

compress to save I/0

symbol
_ _—a ‘filter and project data as early as possible

relational model

dimension 2:
technical principles
and patterns
(concepts, best
practices)

Fifty

relational algebra SR & (-4 L& Shades of
P Predicate

data IaYOUtS, i . | ‘ Pushdown
e.g. column vs row '8 TS

cost-based optimization Contains fifty

variations of a
fundamental
exercise

compress to save I/0

Jens Dittrich

© istock.com Click and Photo 36

http://istock.com

relational model

——

“model all data as multi-attribute sets*

m ‘“data frames*“
“column stores* “row stores*

37

relational algebra

“query those sets through a combination of

simple set-valued functions*

Predicate Pushdown in Relational Model and Relational Algebra

S
/" \

OR.name='Jens"

)
X
N R
R S

checkout my youtube channel for videos explaining the

foundations: https://www.youtube.com/user/jensdit

dimension 3:

software platforms
(concrete implementations
& frameworks)

Flink

PostgreSQL

MongoDB

ai

dimension 2:
technical principles
and patterns
(concepts, best
practices)

dimension 3:

software platforms
(concrete implementations
& frameworks)

dimension 1:
fancy sounding buzzwords
(labels & terms)

11

A War Story’

1Let’s say, | heard this story from a friend.

42

Situation:

Client has a |"big data" | probiem

with sensor data. Already got a

Hadoop cluster, put his data wnere,
learned Spark, wrote some Scala/
Spark/Parquet program to analyze
stuff.

large data

AAVES

MapReduce

NoSQL

b

Situation:

Client has a "big data" problem
with sensor data. Already got a

Hadoop cluster,| aut Nis gata wisic,
learned Spark, wrote seme Scala/

Spark/Parquet program to anaryze
stuff.

Cluster with
HDFS installed

Hadoop
MapReduce

44

Situation:

Client has a "big data" problem
with sensor data. Already got a

Hadoop cluster, put his data there,

learned wrote some
Spark/Parquet |program to analyze

13

11th
Commandment:

f there IS

Big Data,
thou shalt
use Spark or
MapReduce.

il

http://istock.com

Situation:

Client has a "big data" problem
with sensor data. Already got a

Hadoop cluster, put his data there,
learned Spark, wrote some Scala/

Spark/Parquet tG-analvze

stuff.

spaghetti code

flexible query
processing

clear layering

41

) Customer

- | | engineers an gl
M . L
‘ entire car Vo %
| - i
) | g
} _
’l
l' /
e
o

© istock.com SerrNovik

rather than simply buying a
state-of-the-art car

http://istock.com
https://www.istockphoto.com/de/portfolio/SerrNovik?mediatype=photography

Situation:

Client has a "big data" problem
with sensor data. Already got a
Hadoop cluster, put his data there,
learned Spark, wrote some Scala/
Spark/Parquet program to analyze
stuft.

More Detalls:

sensor traces stored in HDFS,
uses Parguet (column/PAX layout),
Software skims through traces,
highly parallelized through Spark,
queries are run on the cluster

49

Traces:
[timestamp, sensorid, value, fluff, more fluff]

e.g. Desired:
12:00:34, 23, 7, fluff, more fluff) queries of the following type:

12:00:35, 56, 56, tluff, more fluff) when is sensor<x> <operator> <value>?
12:00:37, 123, 9, fluff, more fluff)

(

(

(

(12:00:39, 89, 131, fluff, more fluff) e.g. value of sensor42 > 15.0
(12:00:39, 5567, 156, fluff, more fluff)

(12:00:41, 3, A, fluff, more fluff) e.g. value of
(

(

(

(

(

(

12:00:43, 5785, 4213, fluff, more fluff) sensori5 > 15.0 AND sensor77 < 9.0
12:00:43, 4365, 9, fluff, more fluff)

12:00:44, 37, 121, tluff, more fluff) only few attributes in each query
12:00:44, 335, 156, fluff, more fluff)

12:00:45, 23, zz, fluff, more fluff)

12:00:47, 373, 354, fluff, more fluff)

Traces: Observation:

[timestamp, sensorid, value, fluff, more fluff]
fluff not required for query

o.q. processing

12:00:34, 23, 7, fluff, more fluff)
12:00:35, 56, 56, fluff, more fluff)
12:00:37, 123, 9, fluff, more fluff)
12:00:39, 89, 131, fluff, more fluff)
12:00:39, 5567, 156, fluff, more fluff)
12:00:41, 3, A, fluff, more fluff)

(

E Optimization:
(

(

(

(12:00:43, 5785, 4213, fluff, more fluff)
(

(

(

(

(

1. Remove the fluff

12:00:43, 4365, 9, fluff, more fluff)
12:00:44, 37, 121, fluff, more fluff)
12:00:44, 335, 156, fluff, more fluff)
12:00:45, 23, zz, fluff, more fluff)
12:00:47, 373, 354, fluff, more fluff)

Traces:

[timestamp, sensorid, value]

e.g.

(12:00:34, 23, 7)
(12:00:35, 56, 56)
(12:00:37, 123, 9)
(12:00:39, 89, 131)
(12:00:39, 5567, 156)
(12:00:41, 3, A)
(12:00:43, 5785, 4213)
(12:00:43, 4365, 9)
(12:00:44, 37, 121)
(12:00:44, 335, 156)
(12:00:45, 23, zz)
(12:00:47, 373, 354)

Observation:

even though data is mapped to
Parquet (columnar PAX-format), this
does not help query processing in
this case: no clustering of attributes!

Optimization:

2. change format to
[sensorid, timestamp, value]
or:

partition by sensorid

(same effect)

data layouts,

e.d. column vs row

92

Traces: Observation:
[timestamp, sensorid, value]

now, within each partition the

e.q. sensorid is redundant
(12:00:34, 23, 7)

(12:00:35, 23, 8)

(12:00:36, 23, 9) Optimization:
(12:00:37, 23, 8)

(12:00:38, 23, 7) 3. change format to
(12:00:39, 23, 6) timestamp, value]

and store sensorid once per partition
(12:00:34, 24, 45)
(12:00:35, 24, 44)
(12:00:36, 24, 43)
()
()

compress to save |/0

12:00:37, 24, 42
12:00:38, 24, 43

93

Traces:
[timestamp, value]

e.g.

12:00:34, 7
12:00:35, 8
12:00:36, 9
12:00:37, 8
12:00:38, 7
12:00:39, 6

AN N AN N SN AN

)
)
)
)
)
)

(12:00:34, 45)
(12:00:35, 44)
(12:00:36, 43)
(12:00:37, 42)
(12:00:38, 43)

23

24

X 500 speedup

DA

Traces: Observation:

[timestamp, value]
redundancy due to dense

timestamps and continuous

©.9 measurements

(12:00:34, 7)

(12:00:35, 8)

(12:00:36, 9) Optimization:

(12:00:37, 8) 23

(12:00:38, 7) 4. difference encode data
(12:00:39, 6)

12:00:34, 45
12:00:35, 44

()
()
(12:00:36, 43) 24
()
()

12:00:37, 42
12:00:38, 43

Traces:
[timestamp, value]

00: 34, 7)
)

23

)

i 24 X 12 speedup
=> X 6000 speedup

Traces: Observation:
[timestamp, value]

data locality increases due to
attribute clustering. This was not

e.g. possible with the old layout.
12:00:34, 7
21 1)) => much better exploitation of the

| storage hierarchy: likelihood
(1,1) 23 increases that some of the columns
(1, -1) are entirely kept in main memory or
(1, -1) on some SSD as an additional buffer
(1, -1)

(
(1, -1) cluster data by hotness

(1, -1) 24 along the storage hierarchy
(

(

Traces:
[timestamp, value]

e.g.

Observation:

data locality increases due to
attribute clustering. This was not
possible with the old layout.

=> much better exploitation of the
storage hierarchy: likelihood
increases that some of the columns
are entirely kept in main memory or
on some SSD as an additional buffer

cluster data by hotness

along the storage hierarchy

Traces:
[timestamp, value]

€.0.

(12:00:34, 7) Hot Data

(1, 1)

(1, 1)

) -

(1, -1)

(1 ’) some handwaving here:

depends to some degree on the
R actual query patterns,

(1 2:00:34, 7) Cool Data but this is the ballpark

(1 3 _1)

(1 3 _1) 24

(1 3 _1)

(

") In total ~10,000 speedup

(Positive) Side Effects

. data could be stored in compressed format already when being created on
the machine,

=> factor 12 less storage, hardware/bandwidth savings along the entire
data generation and processing pipeline

. there is no need to heavily parallelize queries here
=> no need to use heavy-lifting with Spark, no fat clusters or similar

. QP is very lightweight!
=> QP can be done on very thin-clients even a smartphone

. only overall datasizes are the limit for the client; however, if users are
iInterested In attribute subsets anyways,

=> with our layout, they can easily pull those attribute subsets to their
laptop/smartphone

PS: and there is even more you can do...
=> this kind of query performance enables new types of analytics, e.g.
online anomaly detection, etc...

Process Recap:

Y.

. client did some "Big Data/Spark-Thingie"
(dimension 1)

. we went back to really understanding the client's original problem:
what does he actually want to do?

. we combined a couple of fundamental technical principles of data
management, namely data layouts, compression, hot/cool-clustering

. the synergies trigger I/0O-time savings of a factor ~10,000, and storage
savings of ~factor 12

. all of this is totally software platform independent!

Takeaways:

Design solutions on

dimension 2 only

Consider dimension 3 an

afterthought

_—

do NOT confuse the three dimensions,

unless you want to explicity fool people
(which | do not recommend in any situation)

dimension 1:
fancy sounding buzzwords

Realize that dimension 1

Is solely about marketing

(€ C @ (© daimond.ai o« O W Q Suchen vl @D

()

D:Al:MOND DATA SCIENCE CONSULTING Potenzialanalyse Projektrealisierung Team Kontakt Blog

Alle reden uber Data Science. Aber
was bedeutet das fur mein
Unternehmen?

BRINGEN SIE DATA SCIENCE IN IHR
UNTERNEHMEN

Als Data Science Consulting helfen wir Ihnen Mehrwerte aus ihren Daten zu schopfen und dadurch mehr Effizienz, Transparenz und Struktur
in ihr Unternehmen zu brinaen. Dadurch konnen Sie sich Wettbewerbsvorteile sichern. Produktionsketten effizienter gestalten neue

https://www.youtube.com/user/jensdit/

M} ONXTT Y

@ datenbankenlernen.de

& Prof. Dr. Jens Dittrich
- 6,564 subscribers

HOME VIDEOS PLAYLISTS CHANNELS DISCUSSION ABOUT Q.
Popular uploads PLAY ALL RELATED CHANNELS
Mehrstellige Beziehungstypen mit Schilissel .-) ») PASS 2- First (and ﬁyl:cgem e . Mehrstellige Beziehungen z‘;: CMU Database Group
«Ein Bild wird von SUBSCRIBE
A _F N i - = —— 1 TheSimplelnformatics
_Sotast st b F o, Kz ok RETIS © 15: : v s = S
SUBSCRIBE
13.08 Entity Relationship 13.13 Umsetzung ER nach 14.113 Hard Disks, Sectors, 14.475 External Merge Sort 13.09 Entity Relationship
Modellierung: Grundlagen, Relationalem Modell: Zone Bit Recording, Sectors . Modellierung Il: Chen versus
47K views * 4 years ago Q Thomas Preuss
105K views * 5 years ago 62K views * 5 years ago 53K views * 4 years ago 47K views ¢ 5 years ago :
SUBSCRIBE
Database Systems e Unistreams

Traditional Lecture Struc

Hard Disks Mapping PAX to Blocks * . S U BS C RI B E

Database Psu

SUBSCRIBE

Databases: Motivation and Hardware and Storage Data Layouts Indexing Query Processing Algorithms G Fundamentals of datab...

Introduction Prof. Dr. Jens Dittrich Prof. Dr. Jens Dittrich Prof. Dr. Jens Dittrich Prof. Dr. Jens Dittrich SUBSCRIBE

™. r ™. 1 ™ "3 s . 1

G+

Teaching

Materialien

1. Vorlesungen

01a EinfUhrung (1.9 MB)

01b Einflhrung (464 KB)

02 Bug Data Analytics (1.4 MB)

03a Relationales Modell und Algebra (1.9 MB)
03b Zusétzliche Beispiele fur abgeleitete Operatoren (159 KB)
04 Datenbanken (276 KB)

05 Data Exploration (2.3 MB)

06 Statistik (26 MB)

07 MapReduce & Apache Spark (1.1 MB)

08 Lineare Regression (2.7 MB)

09 Klassifizierung (4.9 MB)

10 Entscheidungsbdume (672 KB)

11 Neural Networks (5.2 MB)

12 Clustering (4.5 MB)

2. Notebooks

02 Data Cleaning (137 KB)

03 Relationale Algebra (12 KB)

04 SQL (19KB)

07 Spark (13 KB)

10 Entscheidungsbdume (6.0 KB)

11 Neural Networks (2.1 MB)

&' 02 Data Cleaning X Een

@ - C [@ localhost:8888/notebooks/notebooks/02 Data Cleaning.ipynb 110% oo O ﬁ‘ ‘O\ Suchen ’ ¥l O S =
__Jupyter 02 Data Cleaning Last Checkpoint: 12.04.2018 (unsaved changes) Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O

B+ %< @ B 4 % MRn B C » Code A= e

In [30]: # bedingte Einfdrbung der Zellen des DataFrames:

linksPivot.style.apply(lambda x: ["background: orange" if v >= 42 else "background: lightgreen" if v > 0 else "" for v .
Out[30]:
target Action Adventure Animation Biography Comedy Crime Drama Family Fantasy History Horror Music Musical Mystery Romance Sc|i:-i Spori

source

Action

Adventure

Animation
Biography

Comedy

Crime
Drama

Family

Fantasy

History
Horror
Music
Musical
Mystery
Romance

Sci-Fi

o O O O O O O o o O o o o o o o
o O O O O o o o o o o o o o o
o O O O O O O O o o o o o o o
o O O O O O O o O O o o o o o
o O O O O O o o o o o o

o O O O O O O o o o o o

o O O O O o o o o o

o O O O O o o o o o

o O O O o o o o o

o O O O O O o o o o

o O O O o o o o

Thriller

In [31l]: # die obige Visualisierung fiihrt auf natiirliche Weise zu einer Heatmap:
plt.subplots(figsize=(15,15))
sns.heatmap(linksPivot, cmap=sns.color palette("Greens", 42),annot=True)

out[31l]: <matilotlib.axes. subilots.AxesSubilot at 0x1128ddb38>

n

Big Data Systems Performance:
The Little Shop of Horrors

Jens Dittrich

Saarland Informatics Campus
d:Al:mond.al
twitter.com/jensdittrich

http://twitter.com/jensdittrich

Backup

Data Science
VS
Machine Learning

Data

. Data Minin
Science 5

Data Science

Data Mining

Math

Programming

The Data Science Cake

Ingredients:

509 statistics

1209 linear algebra
200g programming
1kg visualisation
3009 software
engineering

twitter.com/jensdittrich

Additional skills:
creativity

out of the box thinking
grit

team spirit

© istock.com sasilsolutions

http://istock.com

data co

lection

)

{

data acquisition

/

explor
&visua

[data profiling,

ation
1zation ?

L4

{

data cleaning

N

A

q feature engineeri

P

=z

N

modelingl

(AN

model trainingﬁ

{

model testing \

result interpretation

data co

lection

)

{

data acquisition

/

explor
&visua

[data profiling,

ation
1zation)

L4

{

data cleaning

N

[featu re

engineering b

/

\ modelingl

Al&ML

(AN

model trainingﬁ

{

model testing \

result interpretation

data co

lection

)

{

data acquisitionJ

C

data profiling,
exploration
&visua ization)

\ 4
zdata cleaning

Database Management
System (DBMS)

data collection 1

tdata acquisition.zu."""

E data profiling,
~ exploration
| &visualization

~

<

;/‘

fdata cleaning

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII’IIIIIII

Data Cleaning

Data Exploration

statistics

Data Mining/Clustering

q feature engineering)

/

N

modelingl

AN

model trainingﬁ

{

model testing \

result interpretation

data collection 1

tdata acquisitionJ

[data profiling,
exploration
&visua ization?

zdata cTeaning
\

A
q feature engineeri

P

=z

> relational model,

\ modelingl

& relationale algebra, {model trainingj
databases, t
MapReduce, model testing
Spark, \

Workflows result interpretation

data collection 1

exploration

t data acquisition
A l

L data profiling,

&visualization)

L4

relational model,
relationale algebra,
databases,

Data Warehousing

Database Management Z\ .
System (DBMS) data cleaning |\

data materialized in a DBMS

next step (data profiling) outside
the DBMS again

q feature engineeri

P

=z

N

modelingl

(AN

model trainingﬁ

{

model testing \

result interpretation

data collection 1

tdata acquisitionJ

[data profiling,
exploration)

& visualization

4
zdata cleaning

‘ Schema Design |\\ Database Management System (DBMS)
z‘ or: Data Warehouse (DWH)

Relational Model J

relational model, [Database
relationale algebra,
databases,

Data Warehousing

data co

lection

{

data acquisition J

data profiling,
exploration
&visua ization)

4
zdata cleaning

A

q feature engineering

linear regression

classicfication
decision trees

Deep Learning/RNNs

timeseries

HMM

modeling

AN

model trainingﬁ

model testing

result interpretation

Big Data Systems Performance: The Little Shop of Horrors
Prof. Dr. Jens Dittrich
Manuscript for my PyData Talk in Berlin, July 8, 2018

Saarland Informatics Campus
https://bigdata.uni-saarland.de/

d:Al:mond.ai
http://daimond.ai/
https://twitter.com/jensdittrich

Abstract

The confusion around terms such as like NoSQL, Big Data, Data Science, SQL, and Data Lakes
often creates more fog than clarity. However, clarity about the underlying technologies is
crucial to designing the best technical solution in any field relying on huge amounts of data
including “data science', machine learning, but also more traditional analytical systems such
as data integration, data warehousing, reporting, and OLAP.

In my presentation, | will show that often at least three dimensions are cluttered and
confused in discussions when it comes to data management: First, buzzwords (labels &
terms); second, data design patterns (principles & best practices); and Third, software

platforms (concrete implementations & frameworks).

Only by keeping these three dimensions apart, it is possible to create technically-sound
architectures in the field of big data analytics.

| will show concrete examples, which through a simple redesign and wise choice of the right

tools and technologies, run thereby up to 10,000 times faster. This in turn triggers

tremendous savings in terms of development time, hardware costs, and maintenance effort.

Structure and Speaker Notes

title

CV-timeline, my background, add Python

confusion about terminology

people talking

tower of babel

Confusion

[mittelaltermarkt Bild: Wundermittel]
https://commons.wikimedia.org/wiki/File:Jan_Miel_Charlatan.jpg
https://commons.wikimedia.org/wiki/File:Giovanni_Domenico_Tiepolo_-
_The_Charlatan_(The_Tooth-Puller)_- WGA22380.jpg

charlatan, quackery, quack

works as people believe it, make a big show and people will buy it

at the heart of (almost) any selling process

Confusion: good to sell stuff to laymen (aka "idiots")

Confusion example: selling a TV set, all kinds of labels, some of them are just bullshit
you probably don't understand most of it, but you get hypnotized, sounds so great
"this model even has HyperRayPlusRendering!"

"this model has 300 Hz rather than 250Hz" OMG! | will pay the 500 bucks extra

this is the 95% case of customers

ignore the 5% informed customers

however, this totally works for the vendor, as most customers don't have a clue

Confusion example: How would this look like in a data management "store"?

[show vendor selling databases (cylinders)]
"The leading NoSQL Data Lake solution in the cloud"

"Blockchain-enabled"

"powered by Cognitive Computing'
"Al-ready"
"loT" -> "lloT" -> "IDIoT"

"built on Lamda-Architecture"

How to have clarity in a discussion on data management:

1. mapping terms to meaning
[graphically]

confusing vs clear conversation
confusing: mapping to many concepts 1:n-relationship

clear: mapping to single (or few) concepts, 1:1-relationship

[show relationships visually]

semiotic triangle analogy

2. Confusion of dimensions

often at least three dimensions are cluttered and confused when it comes to data
management:

First, fancy sounding buzzwords (labels & terms);
e.g. "big data", "data lake"

they either map to many things at once or are some sort of "hot air"

second, technical principles and patterns (concepts, best practices):
e.g. predicate pushdown
the relational model

relational algebra

data layouts, e.g. column vs row
cost-based optimization

compress to save I/0

these are the building blocks of any decent data management solution

third, software platforms (concrete implementations & frameworks).

Spark, MapReduce, MongoDB, PostgreSQL

they actually implement variants of these principles in software

Example 1: a technical principle:

"50 shades of predicate pushdown"

simple join example: with and without predicate pushdown
distributed system (called "query shipping")

sensor data

smart disks/SSDs (filter data on the device already)
satellites

etc.

Example 2: a technical principle:

the relational model is often confused with concrete implementations like
tables/rows/columns

Example 3: a technical principle:
relational algebra: the mother of all query processing

you use Spark? Well, Spark is simply relational algebra++.

| don’t have time here, if you have ever seen this symbols, learn it, NOW! OK, after my talk is
better.

link to my youtube playlist in German
https://www.youtube.com/watch?v=8rOtQKwl4Ao&list=PLC4UZxBVGKtfArwVsT170JdgkVYZ

MAJNP

all of these principles are entirely implementation/system/programming language
independent

A War Story (let's say "I heard about this, from a colleague"):

| picked an extreme story here. It is exemplary for other things | have seen.

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data
there, learned Spark, wrote some Scala/Spark/Parquet program to analyze stuff.

Let's go through this.

[visually mark terms like "Big data" and analyze stepwise]

"big data", does this mean "large" to him? How big is "large"? How large is big?

"Hadoop cluster" Hmmm, Hadoop is many things [show mapping 1:n], maybe he has a

cluster where he installed HDFS to store the large data?

The 11th Commandment: If there is Big Data, there shall be Spark or MapReduce. [show
Moses with this text on plate]

"some program" -> How much is this carving data management into spaghetti-code rather
than a clearly layered, maintainable, and extensible architecture with even 40-year old query
processing wisdom?

how much battle-proven DB-technology is used there? How much is he reinventing the
wheel?

[cardboard car vs Tesla]

Let's look at the client's solution in more detail:
traces stored on HDFS, uses Parquet file format

software skims through traces using Scala, highly parallelized, queries are run on the cluster

But why not start with the original problem (rather than the existing solution)?:
we have traces of textual sensor data of the form

(timestamp, sensorid, value, fluff, more fluff)

[show textual snippet]

value may be of any type, may carry additional info as well

we have many of those traces from different machines

each trace contains data from thousands of sensors

timestamps not aligned to frequency

Desired: queries of the following type:
when is sensor<x> <operator> <value>?

e.g.sensor42 >15.0
e.g. sensorl5 > 15.0 AND sensor77 < 9.0

only few attributes in each query

currently stored as (timestamp, sensorid, value), i.e. like the data comes in

[example]

1.
our solution: why not store the triplets in this lexicographical order:

(sensorid, timestamp, value)

In its simplest form:
one file (dimension 3!) per sensorid, i.e. "sensor42.bin", "sensor15.bin"

inside each file: (timestamp, value)

this is an application of a fundamental data management principle (recall the principle
dimension 2):

use column layouts for queries querying only few attributes
[example]

I/O-costs for this can be modelled analytically (in Python ;-))
I/O-costs translate to query response time in this case (we are I/0-bound!)
this alone: ~factor 500 improvement in I/O-time

PLUS: compressability is much better now!

another fundamental data management principle:

use compression to reduce bandwidth (rather than storage costs)
this can be modelled analytically (in Python ;-))

=> another factor 12!

in total factor 6000 better I/O-time!

ad this is not the end to it:

PLUS: data works better along the storage hierarchy (if queries are clustered on certain
attributes => data locality increases) This was not possible with the old layout.

=> likelihood increases that some of the columns are entirely kept in main memory or on
some SSD as an additional buffer

this effect is hard to estimate, depends heavily on query patterns
but, | estimate in total factor of at least 10,000 or more improvement

will see when the system is in production eventually

possible "business effects":
- data could be stored in compressed format already when being created on the machine,
again: factor 12 less storage, hardware/bandwidth savings along the entire data generation

and processing pipeline

- there is no need to parallelize queries here => no need to use heavy-lifting with Spark, no
fat clusters or similar;

QP is very lightweight!
- => QP can be done on very thin-clients even a smartphone
- only overall data sizes are the limit for the client; however, if users are interested in

attribute subsets anyways, with our layout, they can easily pull those attribute subsets to
their laptop/smartphone

Recap:
1. client did some "Big Data/Spark-Thingie" (dimension 1)

2. we went back to really understanding the client's original problem: what does he actually
want to do?

3. we combined a couple of fundamental technical principles of data management, namely
data layouts AND compression (dimension 2)

4. the synergies trigger 1/O-time savings of a factor ~10,000, and storage savings of ~factor
12

5. all of this is totally software platform independent! (dimension 3)
PS: and there is even more you can do...

6. this kind of query performance enables new types of analytics, e.g. online anomaly
detection, etc...

d:ai:mond

some recap here

Takeaways: three dimensions

do not confuse the three dimensions, unless you want to explicitly fool people (which | do
not recommend in any situation)

Design solutions on dimension 2 only
Consider dimension 3 an afterthought

Realize that dimension 1 is solely about marketing

youtube-channel: https://youtube.com/user/jensdit

twitter: https://twitter.com/jensdittrich

end

backup slides

