Big Data Systems Performance: The Little Shop of Horrors

Note: presentation = slides \bowtie manuscript (see end of this pdf)

Jens Dittrich **Saarland Informatics Campus** d:Al:mond.ai twitter.com/jensdittrich

Associate Professor, **Saarland University**

2010			2015	2017
Stores				
	Join pro	ocessin	g	
e data management				
Hadoop&Cloud				
Database Architectures			main-memo	ory database
Indexing				
System				
Crazy St	uff			
				Applied ML

Hadoop!

NoSQL!

Data Lake!

Data Lake!

The Data Lake will cure all of your problems!

This model even has HyperRay++Rendering!

"TV expert"

500Hz rather than 250Hz

"TV expert"

© istock.com JackF

"TV expert"

The "Big Data" shop

11

© istock.com JackF

"TV expert"

© istock.com JackF

laywoman

"TV expert"

The leading NoSQL Data Lake solution in the cloud!

layman

Blockchainenabled

layman

JackF **UO** © istock.c

layman

built on the Lamdaarchitecture

layman

JackF **MO** © istock.c

layman

JackF **MO** © istock.c

layman

JackF **U**O © istock.c

layman

Problem 1: ambiguous communication

large data

- 4Vs
- NSA
- Spark
- MapReduce
 - NoSQL

meaning

symbol

large data

4Vs

NSA

Spark

He said: "Big Data"

MapReduce

NoSQL

meaning

symbol

large data

4Vs

NSA

He said: "Big Data"

Spark

MapReduce

NoSQL

24

translated to:

clear communication:

relational algebra

relational algebra, i.e. $\pi, \sigma, \Join, \ldots$

relational algebra

meaning

symbol

28

translated to:

The symbol to meaning landscape

relational algebra	large data
predicate pushdown	Data
relational model	Deep Lear
data layout	MapReduce
cost-based optimization	Hadoop

few

Big Data

cloud

many

meanings

 \mathbf{OO}

advice: only use non-ambigous terms in communication

Problem 2: confusion of dimensions

dimension 2: technical principles and patterns (concepts, best practices)

predicate pushdown

relational model

relational algebra

data layouts, e.g. column vs row

cost-based optimization

compress to save I/O

dimension 2: technical principles and patterns (concepts, best practices)

predicate pushdown

relational model

relational algebra

data layouts, e.g. column vs row

cost-based optimization

compress to save I/O

symbol

dimension 2: technical principles and patterns (concepts, best practices)

predicate pushdown

relational model

relational algebra

data layouts, e.g. column vs row

cost-based optimization

compress to save I/O

meaning

"filter and project data as early as possible"

Fifty Shades of **Predicate** Pushdown

Contains fifty variations of a fundamental exercise

Jens Dittrich

© istock.com Click_and_Photo

dimension 2: technical principles and patterns (concepts, best practices)

symbol

predicate pushdown

relational model

relational algebra

data layouts, e.g. column vs row

cost-based optimization

compress to save I/O

meaning

"model all data as multi-attribute sets"

=> dimension 3: software platforms (concrete implementations) & frameworks)

37

symbol

dimension 2: technical principles and patterns (concepts, best practices)

predicate pushdown

relational model

relational algebra

data layouts, e.g. column vs row

cost-based optimization

compress to save I/O

meaning

"query those sets through a combination of simple set-valued functions"

38

Predicate Pushdown in Relational Model and Relational Algebra

checkout my youtube channel for videos explaining the foundations: https://www.youtube.com/user/jensdit

dimension 3: software platforms (concrete implementations & frameworks)

Spark

dimension 2: technical principles and patterns (concepts, best practices)

dimension 3: software platforms (concrete implementations & frameworks)

> dimension 1: fancy sounding buzzwords (labels & terms)

A War Story¹

¹Let's say, I heard this story from a friend.

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data there, learned Spark, wrote some Scala/ Spark/Parquet program to analyze stuff.

meaning

large data

MapReduce

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data there, learned Spark, wrote some Scala/ Spark/Parquet program to analyze stuff.

meaning

Cluster with HDFS installed

Hadoop MapReduce

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data there, learned Spark, wrote some Scala/ Spark/Parquet program to analyze stuff.

meaning

=> dimension 3: software platforms (concrete implementations & frameworks)

11th Commandment:

If there is Big Data, thou shalt use Spark or MapReduce.

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data there, learned Spark, wrote some Scala/ Spark/Parquet program to analyze stuff. meaning

spaghetti code

flexible query processing

clear layering

Customer engineers an entire car

© istock.com SerrNovik

rather than simply buying a state-of-the-art car

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data there, learned Spark, wrote some Scala/ Spark/Parquet program to analyze stuff.

More Details:

sensor traces stored in HDFS, uses Parquet (column/PAX layout), Software skims through traces, highly parallelized through Spark, queries are run on the cluster

[timestamp, sensorid, value, fluff, more fluff]

e.g.

(12:00:34, 23, 7, fluff, more fluff) (12:00:35, 56, 56, fluff, more fluff) (12:00:37, 123, 9, fluff, more fluff) (12:00:39, 89, 131, fluff, more fluff) (12:00:39, 5567, 156, fluff, more fluff) (12:00:41, 3, A, fluff, more fluff) (12:00:43, 5785, 4213, fluff, more fluff) (12:00:43, 4365, 9, fluff, more fluff) (12:00:44, 37, 121, fluff, more fluff) (12:00:44, 335, 156, fluff, more fluff) (12:00:45, 23, zz, fluff, more fluff) (12:00:47, 373, 354, fluff, more fluff)

Desired:

queries of the following type: when is sensor<x> <operator> <value>?

e.g. value of sensor 42 > 15.0

e.g. value of sensor15 > 15.0 AND sensor77 < 9.0

only few attributes in each query

50

[timestamp, sensorid, value, fluff, more fluff]

e.g.

(12:00:34, 23, 7, fluff, more fluff) (12:00:35, 56, 56, fluff, more fluff) (12:00:37, 123, 9, fluff, more fluff) (12:00:39, 89, 131, fluff, more fluff) (12:00:39, 5567, 156, fluff, more fluff) (12:00:41, 3, A, fluff, more fluff) (12:00:43, 5785, 4213, fluff, more fluff) (12:00:43, 4365, 9, fluff, more fluff) (12:00:44, 37, 121, fluff, more fluff) (12:00:44, 335, 156, fluff, more fluff) (12:00:45, 23, zz, fluff, more fluff) (12:00:47, 373, 354, fluff, more fluff)

Observation:

fluff not required for query processing

Optimization:

1. Remove the fluff

[timestamp, sensorid, value]

e.g. (12:00:34, 23, 7)(12:00:35, 56, 56)(12:00:37, 123, 9)(12:00:39, 89, 131)(12:00:39, 5567, 156)(12:00:41, 3, A) (12:00:43, 5785, 4213)(12:00:43, 4365, 9)(12:00:44, 37, 121)(12:00:44, 335, 156)(12:00:45, 23, zz) (12:00:47, 373, 354)

Observation:

even though data is mapped to Parquet (columnar PAX-format), this does not help query processing in this case: no clustering of attributes!

Optimization:

2. change format to
[sensorid, timestamp, value]
or:
partition by sensorid
(same effect)

dimension 2: technical principle:

data layouts, e.g. column vs row

[timestamp, sensorid, value]

e.g.

(12:00:34, 23, 7)

(12:00:35, 23, 8)

(12:00:36, 23, 9)

(12:00:37, 23, 8)

(12:00:38, 23, 7)

(12:00:39, 23, 6)

(12:00:34, 24, 45) (12:00:35, 24, 44) (12:00:36, 24, 43) (12:00:37, 24, 42) (12:00:38, 24, 43) **Observation:**

now, within each partition the sensorid is redundant

Optimization:

3. change format to[timestamp, value]and store sensorid once per partition

dimension 2: technical principle:

compress to save I/O

e.g. (12:00:34, 7) (12:00:35, 8) (12:00:36, 9) (12:00:37, 8) (12:00:38, 7) (12:00:39, 6)

(12:00:34, 45) (12:00:35, 44) (12:00:36, 43) (12:00:37, 42) (12:00:38, 43)

23

24

e.g. (12:00:34, 7) (12:00:35, 8) (12:00:36, 9) (12:00:37, 8) (12:00:38, 7) (12:00:39, 6)

(12:00:34, 45) (12:00:35, 44) (12:00:36, 43) (12:00:37, 42) (12:00:38, 43)

23

24

Observation:

redundancy due to dense timestamps and continuous measurements

Optimization:

4. difference encode data

dimension 2: technical principle:

compress to save I/O

Traces: [timestamp, value]

```
e.g.
(12:00:34, 7)
(1, 1)
(1, 1)
(1, -1)
(1, -1)
(1, -1)
(12:00:34, 7)
(1, -1)
(1, -1)
(1, -1)
(1, 1)
```

23

24

X 12 Speedup $= > \times 6000 \text{ speedup}$


```
e.g.
(12:00:34, 7)
(1, 1)
(1, 1)
(1, -1)
(1, -1)
(1, -1)
(12:00:34, 7)
(1, -1)
(1, -1)
(1, -1)
(1, 1)
```

23

24

Observation:

data locality increases due to attribute clustering. This was not possible with the old layout.

=> much better exploitation of the storage hierarchy: likelihood increases that some of the columns are entirely kept in main memory or on some SSD as an additional buffer

dimension 2: technical principle:

cluster data by hotness along the storage hierarchy

e.g. (12:00:34, 7)(1, 1)(1, 1)(1, -1)(1, -1)(1, -1)(12:00:34, 7)(1, -1)(1, -1)(1, -1)(1, 1)

Hot Data

23

Cool Data

24

Observation:

data locality increases due to attribute clustering. This was not possible with the old layout.

=> much better exploitation of the storage hierarchy: likelihood increases that some of the columns are entirely kept in main memory or on some SSD as an additional buffer

dimension 2: technical principle:

cluster data by hotness along the storage hierarchy

X~10 speedup

e.g. (12:00:34, 7)(1, 1)(1, 1)(1, -1)(1, -1)(1, -1)(12:00:34, 7)(1, -1)(1, -1)

Hot Data

23

Cool Data

24

(1, -1) (1, -1) (1, 1) in total ~10,000 speedup

some handwaving here: depends to some degree on the actual query patterns, but this is the ballpark

(Positive) Side Effects

- the machine, data generation and processing pipeline
- 2. there is no need to heavily parallelize queries here
- 3. QP is very lightweight! => QP can be done on very thin-clients even a smartphone
- 4. interested in attribute subsets anyways, laptop/smartphone
- 5. PS: and there is even more you can do... online anomaly detection, etc...

1. data could be stored in compressed format already when being created on

=> factor 12 less storage, hardware/bandwidth savings along the entire

=> no need to use heavy-lifting with Spark, no fat clusters or similar

only overall datasizes are the limit for the client; however, if users are

=> with our layout, they can easily pull those attribute subsets to their

=> this kind of query performance enables new types of analytics, e.g.

Process Recap:

- client did some "Big Data/Spark-Thingie" 1. (dimension 1)
- 2. we went back to really understanding the client's original problem: what does he actually want to do?
- 3. (dimension 2)
- savings of ~factor 12
- 5. all of this is totally software platform independent! (dimension 3)

we combined a couple of fundamental technical principles of data management, namely data layouts, compression, hot/cool-clustering

4. the synergies trigger I/O-time savings of a factor ~10,000, and storage

Takeaways:

dimension 2: technical principles and patterns

Design solutions on dimension 2 only

do **NOT** confuse the three dimensions, unless you want to explicity fool people (which I do not recommend in any situation)

dimension 3: software platforms

Consider dimension 3 an afterthought

dimension 1: fancy sounding buzzwords

Realize that dimension 1 is solely about marketing

http://daimond.ai

Als Data Science Consulting helfen wir Ihnen Mehrwerte aus ihren Daten zu schöpfen und dadurch mehr Effizienz, Transparenz und Struktur in ihr Unternehmen zu bringen. Dadurch können Sie sich Wettbewerbsvorteile sichern, Produktionsketten effizienter gestalten, neue

https://www.youtube.com/user/jensdit/

Popular uploads PLAY ALL

13.13 Umsetzung ER nach

Relationalem Modell:

62K views • 5 years ago

14.113 Hard Disks, Sectors, Zone Bit Recording, Sectors

53K views • 4 years ago

Database Systems

13.08 Entity Relationship

105K views • 5 years ago

Modellierung: Grundlagen,

Databases: Motivation and Introduction

Hardware and Storage Prof. Dr. Jens Dittrich

Data Layouts Prof. Dr. Jens Dittrich

datenbankenlernen.de

CUSTOMISE CHANNEL

YOUTUBE STUDIO (BETA)

Q ABOUT

ASS 2: First (and only) Merge finder = set of simila for all platters 8-page runs 13:35 15:41

> 14.475 External Merge Sort 47K views • 4 years ago

> > oggEnnes 1'569 m

14

II,

13.09 Entity Relationship Modellierung II: Chen versus

47K views • 5 years ago

RELATED CHANNELS

Indexing Prof. Dr. Jens Dittrich **Query Processing Algorithms** Prof. Dr. Jens Dittrich

10

∎,

SUBSCRIBE

Teaching

Materialien

1.	Vorl	esui	ngen
----	------	------	------

01a Einführung (1.9 MB)

01b Einführung (464 KB)

02 Bug Data Analytics (1.4 MB)

03a Relationales Modell und Algebra (1.9 MB)

03b Zusätzliche Beispiele für abgeleitete Operatoren (159 KB)

04 Datenbanken (276 KB)

05 Data Exploration (2.3 MB)

06 Statistik (26 MB)

07 MapReduce & Apache Spark (1.1 MB)

08 Lineare Regression (2.7 MB)

09 Klassifizierung (4.9 MB)

10 Entscheidungsbäume (672 KB)

11 Neural Networks (5.2 MB)

12 Clustering (4.5 MB)

2. Notebooks

02 Data Cleaning (137 KB)

03 Relationale Algebra (12 KB)

04 SQL (19 KB)

07 Spark (13 KB)

10 Entscheidungsbäume (6.0 KB)

11 Neural Networks (2.1 MB)

•	oz Dulu (eckpoint: 12.0	4.2010 (0		, nanges,										-	Logout
File Edit \	/iew Inser	t Cell	Kerne	el Widgets	Help)									Tru	usted	Pytł	non 3 O
🖹 🕇 🔀 🖆		Rur	n 🔳 C	Code			\$											
		U	U	U	V	U	U	U	U	U	U	U	Ŭ	U	U	U	U	U IIII
In [30]: #				r Zellen d ambda x: [" if v	>= 42	olso "	'backgr	ound.	lighte	reen"	fv>	olso	"" fo	P 37
Out[30]:	IIIKSFIVOU	.styre.a	ррту(те		Dackyr	ound: (Jrange	11 V	- 42	erse	Dackyr	ound:	TTAILC	reen .		6196	10.	
000[50].																		
	target A	ction Adve	nture Ar	nimation Biog	graphy C	omedy (Crime D)rama F	amily Fa	antasy H	History H	Horror I	lusic N	lusical N	ystery Ro	omance	Sci- Fi S	port
	source																	
	Action	2	155	10	11	45	54	72	7	40	4	19	0	0	18	7	74	4
	Adventure	0	1	38	8	59	8	52	27	52	1	7	0	0	10	6	59	C
	Animation	0	0	0	0	34	0	3	8	3	0	0	0	0	0	1	0	C
	Biography	0	0	0	0	8	12	74	1	0	15	0	0	0	1	5	0	8
	Comedy	0	0	0	0	32	26	100	19	13	0	14	8	2	2	71	5	2
	Crime	0	0	0	0	0	0	97	0	2	2	7	1	0	29	0	1	1
	Drama	0	0	0	0	0	0	48	13	32	28	35	13	4	52	98	28	15
	Family	0	0	0	0	0	0	0	0	17	0	0	1	1	0	1	0	0
	Fantasy	0	0	0	0	0	0	0	0	0	0	15	1	1	3	6	0	0
	History	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Horror	0	0	0	0	0	0	0	0	0	0	11	0	1	22	2	16	0
	Music	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
	Musical	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	Mystery	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8 0	16	1
			0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	
	Romance	0	U	U	0	U	U	U	U		U	100	0	0	0	0	2	U
	Sci-Fi Thriller	0	0	0	0	0	0	0	0	0	0	0				<u>n</u>	0	0

Big Data Systems Performance: The Little Shop of Horrors

Jens Dittrich **Saarland Informatics Campus** d:Al:mond.ai twitter.com/jensdittrich
Backup

Data Science VS Machine Learning

A.I.

Application Domain

Machine Learning Big Data Management

Data Science

Data Mining

Statistics

The Data Science Cake

twitter.com/jensdittrich

Additional skills:

creativity out of the box thinking grit team spirit

relational model, relationale algebra, databases, MapReduce, Spark, Workflows

Big Data Systems Performance: The Little Shop of Horrors

Prof. Dr. Jens Dittrich

Manuscript for my PyData Talk in Berlin, July 8, 2018

Saarland Informatics Campus https://bigdata.uni-saarland.de/

d:Al:mond.ai http://daimond.ai/ https://twitter.com/jensdittrich

Abstract

The confusion around terms such as like NoSQL, Big Data, Data Science, SQL, and Data Lakes often creates more fog than clarity. However, clarity about the underlying technologies is crucial to designing the best technical solution in any field relying on huge amounts of data including `data science', machine learning, but also more traditional analytical systems such as data integration, data warehousing, reporting, and OLAP.

In my presentation, I will show that often at least three dimensions are cluttered and confused in discussions when it comes to data management: First, buzzwords (labels & terms); second, data design patterns (principles & best practices); and Third, software platforms (concrete implementations & frameworks).

Only by keeping these three dimensions apart, it is possible to create technically-sound architectures in the field of big data analytics.

I will show concrete examples, which through a simple redesign and wise choice of the right tools and technologies, run thereby up to 10,000 times faster. This in turn triggers tremendous savings in terms of development time, hardware costs, and maintenance effort.

Structure and Speaker Notes

title

CV-timeline, my background, add Python

confusion about terminology

people talking

tower of babel

Confusion

[mittelaltermarkt Bild: Wundermittel] https://commons.wikimedia.org/wiki/File:Jan_Miel_Charlatan.jpg https://commons.wikimedia.org/wiki/File:Giovanni_Domenico_Tiepolo_-_The_Charlatan_(The_Tooth-Puller)_-_WGA22380.jpg

charlatan, quackery, quack

works as people believe it, make a big show and people will buy it

at the heart of (almost) any selling process

--

Confusion: good to sell stuff to laymen (aka "idiots")

Confusion example: selling a TV set, all kinds of labels, some of them are just bullshit

you probably don't understand most of it, but you get hypnotized, sounds so great

"this model even has HyperRayPlusRendering!"

"this model has 300 Hz rather than 250Hz" OMG! I will pay the 500 bucks extra

this is the 95% case of customers

ignore the 5% informed customers

however, this totally works for the vendor, as most customers don't have a clue

Confusion example: How would this look like in a data management "store"?

[show vendor selling databases (cylinders)] "The leading NoSQL Data Lake solution in the cloud"

"Blockchain-enabled"

"powered by Cognitive Computing"

"Al-ready"

"IoT" -> "IIoT" -> "IDIoT"

"built on Lamda-Architecture"

How to have clarity in a discussion on data management:

1. mapping terms to meaning [graphically]

confusing vs clear conversation

confusing: mapping to many concepts 1:n-relationship

clear: mapping to single (or few) concepts, 1:1-relationship

[show relationships visually]

semiotic triangle analogy

2. Confusion of dimensions

often at least three dimensions are cluttered and confused when it comes to data management:

First, fancy sounding buzzwords (labels & terms);

e.g. "big data", "data lake"

they either map to many things at once or are some sort of "hot air"

second, technical principles and patterns (concepts, best practices):

e.g. predicate pushdown

the relational model

relational algebra

data layouts, e.g. column vs row

cost-based optimization

compress to save I/O

these are the building blocks of any decent data management solution

third, software platforms (concrete implementations & frameworks).

Spark, MapReduce, MongoDB, PostgreSQL

they actually implement variants of these principles in software

Example 1: a technical principle:

"50 shades of predicate pushdown"

simple join example: with and without predicate pushdown

distributed system (called "query shipping")

sensor data

smart disks/SSDs (filter data on the device already)

satellites

etc.

Example 2: a technical principle:

the relational model is often confused with concrete implementations like tables/rows/columns

Example 3: a technical principle: relational algebra: the mother of all query processing you use Spark? Well, Spark is simply relational algebra++.

I don't have time here, if you have ever seen this symbols, **learn it, NOW**! OK, after my talk is better.

link to my youtube playlist in German https://www.youtube.com/watch?v=8rOtQKwl4Ao&list=PLC4UZxBVGKtfArwVsT17oJdqkVYZ MAjNP

all of these principles are entirely implementation/system/programming language independent

A War Story (let's say "I heard about this, from a colleague"):

I picked an extreme story here. It is exemplary for other things I have seen.

Client has a "big data" problem with sensor data. Already got a Hadoop cluster, put his data there, learned Spark, wrote some Scala/Spark/Parquet program to analyze stuff.

Let's go through this.

[visually mark terms like "Big data" and analyze stepwise]

"big data", does this mean "large" to him? How big is "large"? How large is big?

"Hadoop cluster" Hmmm, Hadoop is many things [show mapping 1:n], maybe he has a cluster where he installed HDFS to store the large data?

The 11th Commandment: If there is Big Data, there shall be Spark or MapReduce. [show Moses with this text on plate]

"some program" -> How much is this carving data management into spaghetti-code rather than a clearly layered, maintainable, and extensible architecture with even 40-year old query processing wisdom?

how much battle-proven DB-technology is used there? How much is he reinventing the wheel?

[cardboard car vs Tesla]

Let's look at the client's solution in more detail:

traces stored on HDFS, uses Parquet file format

software skims through traces using Scala, highly parallelized, queries are run on the cluster

But why not start with the original problem (rather than the existing solution)?:

we have traces of textual sensor data of the form

(timestamp, sensorid, value, fluff, more fluff)

[show textual snippet]

value may be of any type, may carry additional info as well

we have many of those traces from different machines

each trace contains data from thousands of sensors

timestamps not aligned to frequency

--

Desired: queries of the following type: when is sensor<x> <operator> <value>?

e.g. sensor42 > 15.0

e.g. sensor15 > 15.0 AND sensor77 < 9.0

only few attributes in each query

--

currently stored as (timestamp, sensorid, value), i.e. like the data comes in

[example]

--

1. our solution: why not store the triplets in this lexicographical order:

(sensorid, timestamp, value)

In its simplest form:

one file (dimension 3!) per sensorid, i.e. "sensor42.bin", "sensor15.bin"

inside each file: (timestamp, value)

this is an application of a fundamental data management principle (recall the principle dimension 2):

use column layouts for queries querying only few attributes

[example]

I/O-costs for this can be modelled analytically (in Python ;-))

I/O-costs translate to query response time in this case (we are I/O-bound!)

this alone: ~factor 500 improvement in I/O-time

PLUS: compressability is much better now!

another fundamental data management principle:

use compression to reduce bandwidth (rather than storage costs)

this can be modelled analytically (in Python ;-))

=> another factor 12!

in total factor 6000 better I/O-time!

ad this is not the end to it:

PLUS: data works better along the storage hierarchy (if queries are clustered on certain attributes => data locality increases) This was not possible with the old layout.

=> likelihood increases that some of the columns are entirely kept in main memory or on some SSD as an additional buffer

this effect is hard to estimate, depends heavily on query patterns

but, I estimate in total factor of at least 10,000 or more improvement

will see when the system is in production eventually

possible "business effects":

- data could be stored in compressed format already when being created on the machine, again: factor 12 less storage, hardware/bandwidth savings along the entire data generation and processing pipeline

- there is no need to parallelize queries here => no need to use heavy-lifting with Spark, no fat clusters or similar;

QP is very lightweight!

- => QP can be done on very thin-clients even a smartphone

- only overall data sizes are the limit for the client; however, if users are interested in attribute subsets anyways, with our layout, they can easily pull those attribute subsets to their laptop/smartphone

Recap:

1. client did some "Big Data/Spark-Thingie" (dimension 1)

2. we went back to really understanding the client's original problem: what does he actually want to do?

3. we combined a couple of fundamental technical principles of data management, namely data layouts AND compression (dimension 2)

4. the synergies trigger I/O-time savings of a factor ${\sim}10,000,$ and storage savings of ${\sim}factor$ 12

5. all of this is totally software platform independent! (dimension 3)

PS: and there is even more you can do...

6. this kind of query performance enables new types of analytics, e.g. online anomaly detection, etc...

d:ai:mond

some recap here

Takeaways: three dimensions

do not confuse the three dimensions, unless you want to explicitly fool people (which I do not recommend in any situation)

Design solutions on dimension 2 only

Consider dimension 3 an afterthought

Realize that dimension 1 is solely about marketing

youtube-channel: https://youtube.com/user/jensdit

twitter: https://twitter.com/jensdittrich

 end

backup slides